
 

CS-202 Exercises on Transport Layer: TCP (L14) 
 

Exercise 1: file transfer time computation​
 
So far, we have taken how to calculate the time it takes for a sender to transfer N packets to the 
receiver under different network conditions.  

Today, we will practice how to calculate the file transfer time while using the TCP 
protocol (or a variant of TCP) at the transport layer.  

The number of segments needed to transfer a file is not given, and have to be deduced 
from TCP’s MSS. Also, the file’s segments are not sent all at once but in rounds 
according to TCP’s sender window. Which means, the time spent by the sender 
waiting for the receiver’s ACK before sending the next segments is included in the 
time computation.  
(Note: unless otherwise stated, assume all segments’ header and ACK segments have 
insignificant size.)  

 
A)​File transfer time calculation 

Assume we have a simple version of TCP were:  

• Congestion control and flow control are disabled.  

• Sender window size is fixed to 4 MSS bytes.  

• Retransmission timeout is T ≫ RT T secs.  

• The receiver still stores (and does not discard) all out-of-order segments.  

End-host A sends end-host B a file of size 8 · MSS bytes.  

A and B are directly connected over a channel with:  

• transmission rate R bytes/sec  

• propagation delay  secs. 𝑑
𝑝𝑟𝑜𝑝

>  4.𝑀𝑆𝑆
𝑅

How long will it take until B receives the entire file (i.e., B receives the last byte of 
the file) in each of the following scenarios?  
Note: Assume that the packet headers (for all layers) have negligible size and that the 
connection is already established.  
 

 



 

1. No segments are lost.  

The file transfer consists of three phases:  

1.​ A Transmits 4 segments:  secs.   4.𝑀𝑆𝑆
𝑅

2.​ A Waits for the ACK for the 4th segment:  secs.  2𝑑
𝑝𝑟𝑜𝑝

3.​ A Transmits the 8th segment, and it arrives at B:  secs. 𝑀𝑆𝑆
𝑅  +  𝑑

𝑝𝑟𝑜𝑝

 

 

2. The 5th segment is lost and Fast-Retransmit is disabled.  

The file transfer consists of four phases:  

1.​ A Transmits the first segment and waits for the ACK:  secs.   𝑀𝑆𝑆
𝑅  +  2𝑑

𝑝𝑟𝑜𝑝

2.​ A transmits the 5th segment:  secs.   𝑀𝑆𝑆
𝑅

3.​ A Waits for the 5th segment to timeout: T secs. (Here, we assume that the timer 
starts after A is done transmitting the 5th segment)  

4.​ A Transmits the 5th segment, and it arrives at B:  secs. 𝑀𝑆𝑆
𝑅  +  𝑑

𝑝𝑟𝑜𝑝

 

 



 

3. The 5th segment is lost and Fast-Retransmit is enabled. 

The file transfer consists of four phases:  

1.​ A Transmits 4 segments:  secs.   4.𝑀𝑆𝑆
𝑅  

2.​ A Waits for the ACK for the 4th segment:  secs.  2𝑑
𝑝𝑟𝑜𝑝

3.​ A Transmits the 8th segment and waits for the ACK:  secs.   𝑀𝑆𝑆
𝑅  + 2𝑑

𝑝𝑟𝑜𝑝

4.​ A Transmits the 5th segment, and it arrives at B:  secs.  𝑀𝑆𝑆
𝑅  +  𝑑

𝑝𝑟𝑜𝑝

 

 
B)​File transfer over TCP 

Consider the topology shown in Figure 1. Host A opens a TCP connection to host B, 
and starts sending a file of size F = 10 bytes, in segments of size MSS = 1byte each. As 
a result of a faulty link, the 5-th packet (without counting the SYN packet in the TCP 
handshake) transmitted by A is lost. 

 

Figure 1: Network topology. 

In this problem, make the following assumptions:  

 



 

• The transmission delay for packets is negligible.  

• The round-trip time between A and B is RTT1.  

• The retransmission timer of host A has a fixed duration equal to 2 ∗ RTT.  

• TCP has Fast Retransmit disabled.  

• A TCP receiver sends an ACK for each packet it receives.  

• The first segment that A transmits will have a sequence number of 1. 

• B stores (does not discard) all out-of-order packets.  

Answer the following questions:  

1. Complete the sequence diagram in Figure 2 with all packets exchanged between 
A and B (we have completed part of the diagram to help you get started).  

2. Calculate how much time it takes for B to finish receiving the file. 
(Note: The one-way propagation delay from A to B is  𝑅𝑇𝑇1

2 )

 

 

You can view the time duration marked down on the sequence diagram in Figure 3. 
With the connection setup time included, it takes 6.5 × RTT1 time to complete the file 
transfer, from start to finish. 

 



 

 
                                    Figure 2: Complete sequence diagram of packet exchanged. 

 



 

 
D) Adding a proxy in-between 

Now, assume A uses node P, which runs an application-layer proxy to transmit the file 
to B, as shown in Figure 3.  

When P receives a connection request from A, it connects a TCP socket with B. After 
that, the proxy application receives data from the TCP socket connected to A (the 
input socket), and writes data out to the TCP socket connected to B (the output 
socket). P forwards these packets to the output socket, the moment it can read them 
from the input socket. The proxy’s operations do not incur any processing delay.  

P is located exactly in the middle of the path between A and B, such that the round-trip 
times between A and P, and between P and B are both equal to RTT2  .  =  𝑅𝑇𝑇1

2

The faulty link described previously is now located on the part of the path between P 
and B (the second half of the path). As a result, the 5-th packet transmitted on that part 
of the path is lost. No packet loss occurs on the part of the path between A and P. 

 
Figure 3: Network topology after a proxy. 

1. Calculate the time it takes for the file transfer to be completed in this new setting. 
(Note: Do not forget to adjust the timeout interval for the two TCP flows; from A 
to P, and from P to B. The timeout interval for the two flows is equal to 2 × RT T2 

= RTT1)  

In this new setting, the transfer time can be computed as follow: First A will 
connect to P and send a TCP SYN. This will take . As soon as P receives this 𝑅𝑇𝑇2

2
SYN from A, it will initiate the handshake with B. The rest of the communication 
between A and P will be carried out in parallel with the communication between P 
and B. Hence, for the first half of the path, we only need to consider the time it will 
take to propagate the first (connection) packet from A to P. Now for the 
communication between P and B, the sequence diagram will be an exact replica of 
the one we created in figure 2. The only difference now is that the round-trip time 
between P and B is half the round-trip time between A and B. Hence, it will take 
6.5×RTT2. Thus, the total file transfer delay will be: 6.5 × RTT2 +  = 7 × 𝑅𝑇𝑇2

2

RTT2 = 7 ·  𝑅𝑇𝑇1
2

 



 

2. Does the introduction of the application-layer proxy in the previous part improve 
or worsen the file transfer? Which features of TCP are responsible for this?  

The main reason why the file transfer will take shorter to complete is the reduction 
of the end-to-end RTT for each flow. This reduction in RTT will have the following 
effects on TCP:  

●​ The congestion window will converge faster to an ideal value (assuming 
that link capacity is limited). In our example, where the capacity is 
unlimited, slow start will benefit even more.  

●​ This will make TCP more responsive in detecting and correcting channel 
error (e.g., the 5-th packet which was lost). This is because the timeout 
interval adjusts to the RTT estimate; a smaller RTT means that a packet is 
retransmitted faster. We would observe the same behavior in the case 
where fast-retransmit was also activated. 

 

 
Exercise 2: the effect of Routing on TCP 
 
Consider the topology shown in Figure 4. End-host A sends end-host B a large file.  
 
A’s traffic is the only active flow in the network and all the traffic traverses links L1, L2, L3 and 
L4. A sends application data into its TCP socket at a rate of 80 Mbps. B can read data from its 
TCP socket at a rate of 30 Mbps.  
 

 

Figure 4: Network Topology with Links’ Bandwidth Capacity.  

1.​ What is the maximum transfer rate for the TCP flow in the following scenarios? Which 
aspect of TCP limits it?  

○​ The TCP receive buffer at B can hold only a small portion of the file.  

Flow control will limit the transfer rate to 30 Mbps, because buffer space is 
limited. A will not send data faster than the rate at which B’s application layer 
frees up TCP buffer space by reading the data. 

 



 

 

○​ The TCP receive buffer at B can hold the entire file.  

Congestion control will limit the transfer rate to 40 Mbps, because B has 
sufficiently large buffer space, which makes flow control irrelevant. The transfer 
rate is, thus, determined by link with the least capacity (L2, in this case). 

Now, Assume that the TCP receive buffer at B can hold only a small portion of the file. During 
the file transfer Link L2 fails and the traffic between A and B is rerouted via links L1, L5, L6 and 
L4. The RTT between A and B increases from RTTorig to RTTnew = 5 · RTTorig .  

2.  Does A and B need to establish a new TCP connection? If yes, describe the message 
exchange.  

There will be no handshake involved; the connection will be preserved. Routing will take 
care of the path change and nothing but the increased RTT will be visible at the transport 
layer. This is because it is only the end-hosts that maintain TCP connection state. 

3. Will the path change affect the TCP flow control?  

Flow control, again, only involves A and B. Thus, flow control will not be affected by the 
path change. 

4. What effect will the path change have on the TCP traffic between A and B? 

Initially, the retransmission timeout at A will be too small, given that the RTT has 
increased. This may cause premature timeouts and, as a result, unnecessary 
retransmissions. Nevertheless, A will continue collecting RTT samples for ACKed 
packets and, thus, it will readjust the retransmission timeout to a suitable value. 

 

 

 

 

 

 

 



 

 
Exercise 3: reading congestion window plot 

Consider the graph shown in Figure 5, which plots the window size of a TCP sender 
as a function of time.  

 

Figure 5: Congestion window size over time.  

1. Identify what happens to the congestion window at the following times: (i) t = 
0.5 secs, (ii) t = 3 secs, (iii) t = 3.5 secs, and (iv) t = 8 secs.  

For each case, you should: a) describe the state transition (previous state and 
next state), b) identify the event that caused it, and c) explain how we can 
conclude that from the graph.  

Example: at t = 2 secs the sender transitions from state u to state v because 
event x occurred. We can see that event x has occurred there, because the 
window size changes from y to z. 

 

(i) at t = 0.5 secs, the sender transitions from Slow Start to Fast Recovery. We 
can see that Triple duplicate ACKs has occurred, because the sender reduces the 
congestion window to half its original size. We can already tell that the previous 
state was Slow Start because of the exponential increase.  

(ii) at t = 3 secs, the sender transitions from Congestion Avoidance to Slow 
Start. We can see that Packet Timeout because the congestion window decreases 
to 1, and a slow start state follows 11 this event. We know that the previous state 

 



 

was Congestion Avoidance because the window size was increasing linearly (+1 
packet per RTT)  

(iii) at t = 3.5 secs, the sender transitions from Slow start to Congestion 
Avoidance. This is because the congestion window becomes larger than ssthresh. 
We can see this transition from the difference in the curves. (Slow Start and 
Congestion Avoidance, as explained before)  

(iv) at t = 8 secs, the sender transitions from Congestion avoidance to Fast 
recovery. We can see that Triple duplicate ACKs has occurred, and not a 
timeout, because the window size decreases to half, and a Congestion Avoidance 
state follows.  

2. Calculate the number of packets that the TCP sender transmits between t = 6 
secs and t = 8 secs.  

The sender is in the Congestion Avoidance state between t = 6 secs and t = 8 secs. 
We know that when a sender is in the Congestion Avoidance state, the congestion 
window of the sender increases by 1 with each transmission round. The window 
size is 20 at t = 6 secs and 40 at t = 8 secs. Thus, (if we include last transmission at 
exactly t = 8 secs, when the sender transmits 40 packets), there are 21 transmission 
rounds (from 20 packets to 40 packets). Therefore, the total number of packets 
transmitted is:  

 
𝑖 = 20

40

∑ 𝑖 =  20 + 40
2 .  21 =  630

3. Calculate the RTT of the TCP flow.  

 

We know that the window size changes by 1 packet per RTT. Following up on the analysis 
done in the previous question, the window size changes 20 times from t = 6 secs till t = 8 
secs (from 20 packets to 40 packets). Thus, RTT =  = 0.1 secs. 8 − 6

40 − 20

 
 
 

 

 

 

 

 

 

 

 

 



 

Exercise 4: a recap 

Alice has opened a persistent TCP connection to Bob. At time T0, Alice starts sending 
to Bob, over this connection, a file of size 12 bytes in segments of MSS = 1 byte.  

Figure 6 shows how the congestion window of Alice, cwnd, changes over time after T0 
and until the file transfer completes. Each of the five points in the graph shows the 
time a change in cwnd took place and cwnd’s value after the change.  

Make the following assumptions:  

• Transmission delay is negligible.  

• Bob sends an ACK for each segment it receives.  

• The first segment that Alice transmits after T0 has sequence number 10.  

• Fast-retransmit is disabled.  

• Only one segment gets lost after T0, and it is a segment sent by Alice. 
• B stores (does not discard) all out-of-order packets.  

 

Figure 6: Congestion window of Alice over time 

 

Based on the congestion window plot of Figure 6, answer the following questions: 

1.​ What is the RTT between Alice and Bob?  

 



 

The RTT between Alice and Bob is 0.5 seconds. We can extract this piece of 
information from what happens at time 1 seconds after T0 and 1.5 seconds after T0. 
TCP is in Congestion avoidance phase during that time, and the size of the congestion 
window increases by 1 MSS (=1 byte) per RTT during that phase. Since the 
congestion window increases from 4 to 5, between 1 secs and 1.5 secs, RTT is equal 
to: = 0.5 secs. 1.5 − 1

5 −4
 

2.​ What is the retransmission timeout used by Alice?  

The transmission timeout of Alice is equal to 2 seconds. According to the information 
we are given, there is only one packet loss (and possible cause for a timeout). This 
timeout, obviously, happens at time 3.5 secs, since the window drops to size 1 MSS. 
According to the sequence diagram we have drawn, the segment that was lost was 
transmitted at time 1.5. Thus, the timeout is equal to 3.5 − 1.5 = 2 secs. 

 
3.​ What was the size of Alice’s congestion window, cwnd, the last time a packet was lost 

before T0?  
The size of cwnd the last time a packet was lost before T0 was 8 (or 9) bytes. The 
value of ssthresh updated if and only if there is a packet loss, and it is set to cwnd 2 . 
Since, in our sequence diagram, the current value of ssthresh is 4, the last there was a 
packet loss (and ssthresh’s value was updated), cwnd was 2 · 4 = 8 bytes. If we 
assume that ssthresh has any non-integral values rounded down, another possible 
value could have been 9, since 9 divided by 2 also yields 4. 
 

4.​ Complete the diagram in Figure 7 that shows what happens after T0 and until the file 

transfer completes. In the diagram, show:  

• All segments exchanged between Alice and Bob.  

• The sequence numbers sent by Alice and the acknowledgment numbers sent by Bob. 

• The state of Alice’s congestion-control algorithm.  

• The size of Alice’s congestion window, cwnd, in bytes.  

• The value of Alice’s slow-start threshold, ssthresh, in bytes. 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 

 



 

 
Figure 7: Sequence diagram. 

 
 
 

 



 

5.​ How long does the file transfer take? Assume that the file transfer completes once 
Alice has received the final ACK for file data.  
From the sequence diagram, we can see that the complete file transfer takes:  

●​ 3 × RT T (to receive the ACKs for packets 13 to 16)  
●​ A timeout  
●​ 1 × RT T (to receive the ACK for packet 17, which has been retransmitted) 

Thus, in total we have 4 · RT T + timeout = 4 · 0.5 + 2 = 4 seconds. 
 

6.​ Now assume (just for this part) that fast-retransmit is enabled. Does this change 
the duration of the file transfer and how/why?  
If Fast-Retransmit were enabled, the file transfer would take 2.5 seconds instead. 
This is because at time 2 seconds, Alice would have finished receiving 3 triple 
duplicate ACKs for SEQ 17. Thus, Alice would have retransmitted the lost packet 
at time 2 seconds, as opposed to time 3.5 seconds (which is the case in the 
sequence diagram). As a result, this would decrease the file transfer time by 1.5 
seconds. Thus, the total transfer time would be 4 − 1.5 = 2.5 seconds. 

 
Exercises to challenge yourself 

Thinking creatively about TCP  

Suppose that each router in the network has infinite buffer space which can hold all 
packets the router has to forward, so that no packet is ever dropped. Given this setting:  

• What happens when a network link becomes congested.  

Since no packet will ever get dropped, congestion will manifest in the form of queuing 
delays, which will increase the RTT between communicating hosts. 

• Describe how individual TCP flows will behave.  

There are two mechanisms in TCP which are relevant here; congestion control and RTT 
estimation. The outcome will depend on how these two interact with each other. In the 
worst case, the sender’s estimate of RTT will keep up with the increasing queuing delay 
and no timeout will occur (transmission timeout depends on RTT). This will cause the 
congestion window size (and queuing delay) to grow indefinitely 

 At first glance, this will not affect TCP throughput that much. However, new TCP flows 
will take longer to establish (the time duration of the TCP handshake is proportional to 
RTT), and will not be able to catch up with pre-existing flows, since nobody will back off 
(this will affect fairness). Finally, network congestion will affect latency-sensitive 
applications (e.g. video calls, DNS lookups) and will render the network pretty much 
unusable. 

• Propose a modification for TCP, which will improve its behavior.  

The sender should base its congestion control algorithm on packet delay, as opposed to 
packet loss. This is something similar to what TCP Vegas (an existing flavor of TCP) 
does. Note that this modification might have some unwanted interference with the way 
that TCP estimates the RTT for a connection. 

 



 

A variant of TCP  

Consider a variant of TCP which flow control is disabled. Is the congestion control in 
this case sufficient to control the transmission rate of a sender if it is overwhelming a 
receiver (i.e., when the receiver has no more buffer space)? Justify your answers.  

Congestion control will throttle the sender when the receiver becomes overwhelmed; 
the receiver will start dropping packets, which the sender will perceive as a congestion 
event. In particular, the sender will experience a transmission timeout and remain in 
the Slow Start state for as long as the receiver has no buffer space left.  

Although congestion control can deal with the issue of an overwhelmed receiver to 
some degree, it will not be as efficient as flow control for the following reasons:  

1.​ This will waste network bandwidth; packets traverse the entire network path 
before an overwhelmed receiver is able to drop them.  

2.​ It will take some time for the sender’s congestion window (and, possibly, their RTT 
estimate) to re-adapt to the network conditions. The congestion window will have 
to grow back to a size which reflects the true capacity of the network (as opposed 
to the capacity of the receiver). This can reduce performance if a receiver only 
processes requests in bursts.  

To sum up, TCP will still work if we disabled flow control. However, this deprives 
the sender of one source of information which it can use to optimize its sending 
strategy. This makes receiver-related events (flow control) pollute the state that the 
sender maintains about network capacity (congestion control). As a result, the 
sender will overreact when a flow-control-related event occurs. 

 

Finding a security loophole  

In Figure 9, Alice is sending a large file to Bob using TCP. Denis tries to disrupt their 
communication by sending traffic to Céline. No other hosts send any traffic 

 



 

 

Figure 9: Network topology. 

 

●​ Describe the simplest attack strategy that achieves Denis’s goal. What condition 
needs to hold for the transfer rates of the links such that this strategy works? 

 
Denis prevent Alice and Bob from communicating with each other by flooding link 
L2. To do so, Denis could send a constant stream of high-volume UDP traffic to 
Céline.  
This attack will succeed if and only iff the capacity of L1 is greater or equal to the 
capacity of L2. 
 
If the capacity of L1 is greater or equal to the capacity of L2, Denis can send 
traffic at a rate equal to the capacity of L2. Since L1 can carry Denis’ attack 
traffic, all of it will reach L2 at the desired rate. Thus, Denis’ attack will succeed. 
 
Otherwise, if the capacity of L1 is lower than the capacity of L2, the attack will 
fail. This is because, even if Denis sends attack traffic at a higher rate, L1 cannot 
carry traffic at a higher rate than the capacity of L1. Since the capacity of L1 is 
lower than the capacity of L2, L2 will have some spare capacity to accommodate 
Alice’s traffic.  
 
Thus, we have proven that the condition we described is both necessary and 
sufficient. 

 



 

●​ How will the TCP connection between Alice and Bob be affected by this attack? 
Draw a simple diagram that shows how Alice’s congestion window, cwnd, evolves 
over time during the attack. You do not need to provide specific time values on the 
x-axis, just show the trend (e.g., does cwnd increase monotonically?)  
 
We can see an example diagram at Figure 11. You can see that after the attack has 
commenced (sometime between 6 seconds and 8 seconds), Alice is no longer able 
to reliably reach Bob. Thus, Alice’s transmissions will almost always timeout. 20 
(In the figure it is not shown how the timeout estimation algorithm of TCP will 
make Alice’s timeout achieve increasingly bigger values, as Alice tries to 
determine the RT T between her and Bob.) 

 
Figure 10: Congestion window of Alice over time. 

 
 

●​ Describe the attack strategy that achieves Denis’s goal while minimizing the 
amount of traffic that Denis sends to Céline.  
Hint: Denis does not need to send traffic at a constant rate.  
 
The TCP algorithm makes the sender transmit its messages in bursts. As long as 
there are no serious congestion issues on the channel, segments will flow from the 
sender to the receiver in a relatively steady rate. In that state, the congestion 
window oscillates between w 2 and w, where w is the maximum achievable value 
for the congestion window.  
 
However, when a channel becomes heavily congested (e.g., due to an ongoing 
attack), the sender will be experiencing constant timeouts. Thus, all traffic 

 



 

transmitted by the sender will be done in bursts. Moreover, these bursts will be 
transmitted at the precise moment when the sender’s timeout event triggers. Thus, 
it is possible for Denis to attack the TCP flow by targeting those retransmission 
events. Every time that Denis expects Alice to retransmit her packets, he sends a 
burst of traffic to saturate the buffers of R1.  
 
Thus, when Alice’s retransmitted packet arrives at the congested router, R1 will 
drop the segment of Alice, and Alice will have to wait for her timeout again. 
Naturally, Denis can stop 21 transmitting flood traffic for as long as Alice is not 
about to transmit a new segment.  
 
An added benefit of targeting timeout retransmissions is that such failed 
retransmissions cause TCP to exponentially increase its timeout interval. Thus, 
Alice will be sending progressively less frequently. This means that Denis will have 
to send even less traffic as time goes on.  
 
What we have described so far is an attack strategy that works. In order to argue 
that this strategy is optimal, we need to examine whether an attack where we 
transmit a fewer number of messages is possible.  
 
Note that the goal of Alice is to be able to send traffic to Bob at some predictable 
rate, even if this rate is significantly lower than before Denis’ intervention. The 
goal of Denis is to make it so that Alice has no guarantee about how long it will 
take for Alice’s segment to reach Bob.  
 
Denis only transmits attack messages while Alice is retransmitting timed-out 
packets. If Denis fails to transmit enough messages to flood L2, the segment of 
Alice will not get dropped, and Alice will be able to transmit a new piece of 
information to Bob. This will make Denis’ attack ineffective. Thus, for Denis’ 
strategy to be effective, Denis should always transmit at least as many messages 
are necessary to block Alice’s retransmissions. Since Denis is not transmitting any 
attack traffic at any other point in time, it is impossible that there exists a strategy 
more optimal than the one we described. 
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